Flue Gas CO₂ Capture

David A. Smith, PE Remy Dumortier, Ph.D. Lihong Bao, Ph.D. Michael C. Trachtenberg, Ph.D

24B metric tonnes annually worldwide 25% from the U.S.

Transportation

Commercial

Industrial

Residential

Technology- Biomimetic Approach

As seen by the Anatomist

Cardio-vascular / Cardio-pulmonary Systems

The CO₂ management strategy of most animals

Chemical Engineer's Approach

The Carbozyme Permeation Process

Carbozyme Permeator Modules

CCS May 8-11, 2006

Carbozyme Permeator

Enzyme-based, Dual Hollow Fiber Contained Liquid Membrane Permeator

- Feed / Retentate
- Permeate / Sweep
- Heating element

2 x 148 fibers

Length = 55.2 cm

O.D. = $300 \mu m$

 $I.D. = 200 \mu m$

Total Area = 0.154 m^2

Permeator Performance Selectivity

Long-Term Stability

Model Validation

- Celgard X40-200 micro-porous hollow fiber
- # of feed fibers = # of sweep fibers
- nominal porosity = 30%
- Total membrane surface area = 0.19 m²
- Effective membrane area = 0.076 m^2
- No CLM pumping

In the simulation kcat = 1E6 (s⁻¹)

CA Isozyme Comparison

Effect of Temperature on CO₂ Removal

Lab Test Apparatus

Methane/Propane Data

Pure Gas vs. Combustion Products

Flue Gas CO₂ Capture

Percent of US CO₂ emissions from energy and industry 2004 (%) (*DOE*, 2005)

Carbozyme Process Engineering

Coal

EPRI Coal Case 7C with Carbozyme Permeator

		Permeator Feed - Stream # 5				
Component	MW	Vapor	Composition	Partial Pressure	Mass Flow	
		mole/sec	Vol%	Pa	gm/min	
CO2	44.0	2,456.6	13.8%	14,335.32	6,485,217	
02	32.0	535.0	3.0%	3,121.93	1,026,796	
H2O	18.0	1,813.5	10.2%	10,582.67	1,959,650	
N2	28.0	12,785.4	72.0%	74,608.74	21,489,675	
CO	28.0	1.5	0.0%	8.52	2,454	
HCI	36.5	0.1	0.0%	0.30	113	
SO2	64.0	4.5	0.0%	26.47	17,428	
SO3	80.0	0.2	0.0%	1.00	825	
NOx	46.0	6.0	0.0%	35.09	16,593	
Argon	39.9	160.4	0.9%	936.19	384,533	
Total		17,763.1	100.0%	103,656	31,383,283	
Temp (¡C)					55	
Pressure (Pa)					103,656	
RH					67%	
Flow (LPM)					28,035,621	

EPRI Coal Case 7C with Carbozyme Permeator

	Compressed/Dried CO2 - Stream # 32					
Component	Vapor	Composition	Partial Pressure	Mass Flow		
	mole/sec	Vol%	Pa	gm/min		
CO2	2,212.1	98.3%	8,309,551	5,839,933		
O2	2.8	0.1%	10,684	5,459		
H2O	0.1	0.0%	544	156		
N2	34.3	1.5%	129,027	57,734		
CO	0.0	0.0%	0	0		
HCI	0.0	0.0%	0	0		
SO2	0.0	0.0%	1	1		
SO3	0.0	0.0%	0	0		
NOx	0.0	0.0%	1	1		
Argon	0.4	0.0%	1,619	1,033		
Total	2,249.9	100.0%	8,451,427	5,904,317		
Temp (¡C)				50		
Pressure (Pa)				8,451,427		
RH				4%		
Flow (LPM)				42,890		

Pictorial Representation of Flue Gas CO₂ Capture

Direct Competition: Too Expensive

Cost Advantage - Coal Flue Gas CO₂ Capture

Industry (DOE) Performance Goals

For Coal Fired Electric Generators

- Capture 90% of the CO₂ in the flue gas stream
- Achieve 95% purity in the product
- Impose a cost burden of less than 20% increase in the cost of energy services by 2007; 10% by 2012

Carbozyme meets or exceeds these criteria, TODAY

The Carbozyme Benefit

Acknowledgements

DOE STTR - DE-FG02-02ER83380

Frank Ferrell, Ph.D.

José D. Figueroa, MBA, PMP

